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In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE)
algorithm on a variant of Satisfiability problem for an ensemble of random graphs
parametrized by the ratio of clauses to variables; M /N. We introduce a set of macro-
scopic parameters (landscapes) and put forward an ansatz of universality for random bit
flips. We then formulate the problem of finding the smallest eigenvalue and the excitation
gap as a statistical mechanics problem. We use the so-called annealing approximation with
a refinement that a finite set of macroscopic variablessgsonly energy) is used, and are
able to show the existence of a dynamic threshold ~,, beyond which QAE should take
an exponentially long time to find a solution. We compare the results for extended and
simplified sets of landscapes and provide numerical evidence in support of our universality

ansatz.

PACS numbers: 03.67.L.x,89.70.4+c

I.  INTRODUCTION

An important open question in the field of quantum computing is whether it is possible to
develop quantum algorithms capable of efficiently solving combinatorial optimization problems
(COP). In the simplest case the task in a COP is to minimize the energy furictiavith the
domain given by the set of all possible assignment&/dbinary variablesg = {o1,...,0n},

o; = £1. In quantum computation this cost function corresponds to a Hamiltdtijan

Hp =Y E,lo) (o] (1)

o) = |o1)1 ®|02)2 ® - ® |on)n,
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where the summation is over th¥¢’" states|o) forming the computational basis of a quantum
computer withNV qubits. Statdo;); of the j-th qubit is an eigenstate of the Pauli matixwith
eigenvalues;. It is clear from the above that the ground state#f encodes the solution to the
COP with cost function®,.. In what follows we shall use two equivalent notations for binary
variables: Ising spins; = +1 as well as bitg; = (1 —0,)/2 =10, 1.

Recently Farhi and coworkers proposed a new family of quantum algorithms for combinato-
rial optimization that is based on the properties of quantum adiabatic evolution [1, 2]. Numerical
simulations were performed for the study of its performance for satisfiability problems [8]. Im-
plementation of these algorithms on a quantum computing device is feasible for COPs where the
energy functionf,, possesses a locality property, in a sense that it is given by the sum of terms
each involving only a relatively small number of bits, that does not scale Wifh, 3, 4]. An ex-
ample of a problem that can have this property is Satisfiability that deals\wiimary variables,
submitted tal/ constraints, assuming that each constraint invof€s) bits. The task is to find a
bit assignment that satisfies all the constraints.

Satisfiability is a basic problem in the so-called NP-complete class [5]. This class contains
hundreds of the most common computationally hard problems encountered in practice, such as
constraint satisfaction and graph coloring. NP-complete problems are characterized in the worst
case by exponential scaling of the run time or memory requirement with the problery siae
special property of the class is that any NP-complete problem can be converted into any other
NP-complete problem in polynomial time on a classical computer. Therefore, it is sufficient to
find a deterministic algorithm that can be guaranteed to solve all instances of just one of the NP-
complete problems within a polynomial time bound. It is widely believed, however, that such an
algorithm does not exist on a classical computer. Whether it exists on a quantum computer is one
of the central open questions.

Running of the quantum adiabatic evolution algorithms (QAA) for several NP-complete prob-
lems has been simulated on a classical computer using a large number of randomly generated
problem instances that are believed to be computationally hard for classical algorithms [2, 6, 8].
Results of these numerical simulations for relatively small size of the problem instances (

25) suggest guadraticscaling law of the run time of the QAA withV.

A particularly simple version of Satisfiability is the NP-complete Exact Cover problem that

was used in [2] to study the performance of QAA. In this problem each constraint is a clause that

involves a subset dk = 3 binary variables. A given constraint is satisfied if exactly one of its bits



equals 1 and the rest of the bits equal 0. In the optimization version of this problem one minimizes
the energy functio’,, that is equal to the number of constraints violated by a given bit-assignment
o. A generalization of this problem to an arbitrary numBércan be called positive 1-in-K SAT

[9].

In practice algorithms for NP-complete problems are characterized by a wide range of running
times, from linear to exponential, depending on the choice of certain control parameters of the
problem (e.g., in Satisfiability it is the ratio of the number of constraints to the number of vari-
ables,M/N). Therefore, a practically important alternative to the worst case complexity analysis
is study of a typical-case behavior of optimization algorithms on ensembles of randomly generated
problem instances chosen from a given probability distribution. For example, in the case of pos-
itive 1-in-K SAT one can define a uniform ensemble of random problem instances. An instance
7 consists ofM statistically independent clauses, each correspondingAoetaple of distinct
bit-indices uniformally sampled from the intervdl, ) with probability 1/ (7).

In the case of an exponential scaling low for the algorithm’s running tigpess convenient to
analyze the distribution of a normalized logarithmic quaritityt, /N. This distribution becomes
increasingly narrow in the limit of larg& where the mean valugog¢,) /N well characterizes the
typical case exponential complexity of an algorithm. For Satisfiability problem the dependence of
the asymptotic quantity

n=lim (logt.)/N 2)
on the clause-to-variable ratio= M /N has the qualitative form shown in Fig.1. At some critical
valuey = ~, algorithmic complexity undergoes the dynamical transition from polynomial to
exponential scaling law. This transition has been studied recently for the case of a variant of
the classical random-walk algorithm for the Satisfiability problem [10]. Functior) is non-
monotonic iny and reaches its maximum at a certain paint- ~,. It was discovered some time
ago [11, 13, 14] that. is a critical value for the so called satisfiability phase transition: <4f .,
a randomly drawn instance is satisfiable with high probability, i.e., there exists at least one bit
assignment that satisfies all the constrainte{ = 0). For~ > ~. instances are almost never
satisfiable. In the asymptotic limiY — oo the proportion of satisfiable instances drops from 1 to
0 infinitely steeply aty = 4, as shown in Fig. 1.

The value ofy, (unlike~,) depends on both the problem at hand and the optimization algorithm.
Comparison of the dynamical threshotggfor different algorithms provides an important relative

measure of their typical-case performance in a given problem. In this paper we will provide the



FIG. 1: Solid line shows the qualitative plot of the normalized quantityy.x VS M /N (max IS @ maxi-

mum value ofy). Dashed line shows the proportion of satisfiable instaxség /N .

analysis of the dynamical threshold for the quantum adiabatic evolution algorithm and also for

simulated annealing for several versions of the random satisfiability problem.

. QUANTUM ADIABATIC EVOLUTION ALGORITHM

Consider the time-dependent Hamiltoni&fit) = H(t/T)
H(r)=(1—7)Hp+7Hp, (3)

wherer = t/T € (0,1) is dimensionless “time”H p is the “problem” Hamiltonian (1) an@é{(

is a “driver” Hamiltonian, that is designed to cause transitions between the eigenstaigs of
Using dimensionless time and setting= 1 the quantum state evolution obeys the equation,
iTO|W(T))/0r = H(7)|¥(7)). At the initial moment the quantum stgt&(0)) is prepared to be

the ground state df{(0) = Hp. In the simplest case
N .
Hp=—>_ol, [¥(0)=2"2> o), (4)
Jj=1 o

whereos’ is a Pauli matrix forj-th qubit. Consider the instantaneous eigenstateX (af) with

eigenvalues\;(7) arranged in nondecreasing order at any value ef(0, 1)

H(T) 9x(7)) = Ak(7) [01(T)), ()

herek = 0,1,2,...,2Y — 1. Provided the value of’ (the runtime of the algorithm) is large

enough and there is a finite gap for alk (0, 1) between the ground and excited state energies,



A (7) — Xo(7) > 0, the quantum evolution is adiabatic and the state of the sysiém)) stays
close to an instantaneous ground statg(7)) (up to a phase factor). The stag (1)) coincides
with the ground state of the problem Hamiltoniaf» and, therefore, a measurement performed
on the quantum computer at the final moment 7' (7 = 1) will yield one of the solutions of
COP with large probability.

The standard criterion for adiabatic evolution is usually formulated in terms of minimum exci-

tation gap between the ground and first exited states [12]

T> Admin = max [A(7) — Ao(7)]. (6)

AN 0<r<1

Here the quantity is less than the largest eigenvalue of the operatpr— Hp [18] and scales

polynomially with V in the problems we consider.

. QUASICLASSICAL APPROXIMATION AND COMBINATORIAL LANDSCAPES

In the computational basis (1) we have
H=7 Eslo)(o|—(1-7)) dldo,d),1]|o) (], (7)

hered[m,n| denotes the Kronecker delta-symbol and the summation is over the pairs of spin

configurationsr ando”’ that differ by the orientation of a single spif(o, o')=1, where

N
/ 1 /
d(a’,a):QZ]Uj—oj], (8)
j=1

denotes a so-called Hamming distance between the spin configurateomdo’, that is the num-

ber of spins with opposite orientations. Eq. (5) in the computational basis takes form
M1)9o(T) = TE¢o(r) = (1 =7) Y 8 [d(0.0"),1] do(7) (9)

(here we drop the subscript indicating the number of a quantum stat@ide¢,.). In what follows
we assume that typical energies = O(N), but the change in the energy after a single spin flip is
O(1). This assumption about the energy landscape holds for instances of the Satisfiability problem
with the clause-to-variable ratit/ /N = O(1), the case of most interest for us (see the discussion
in Sec. I).

We now consider a set of functiodsX; = Ci(o,7),l = 1,...,K}, referred to as (com-

binatorial) landscapes, that depend on a problem instZrmed project a spin configuration



onto a vectof X} with integer-valued components. Prior to considering a specific COP here we
make certain assumptions about the properties of landscapes and apply them to the analysis of the
minimum gap in the QAA.

In particular, we assume that, similar to energy, landscépes= C;(o,Z)} are macroscopic
functions, so that the typical values &} are O(/N), and possess a certaimiversalityproperty
in the asymptotic limitN"- — oo. Specifically, the joint distribution ofC;(o,Z)} over the spin
configurationsr forming the 1-spin-flip neighborhood of an “ancestor” configurasdmepends
on a problem instanc2and spin configuratioa’ onlyvia the set of parametefs(; = C;(¢”’,7)}.

We then define a quantity

K
P =5 2 T]6XClo.T), (10
Xl/ = Cl<0'/,I),

In effect, the above universality property of landscapes implies that the set of all possible
spin configurationsr is divided into “boxes” with coordinate§X;} where X; = C;(o), and
P ({X;}|{X]/}) (10) represents the transition probability from boX, } to box{X/}. In particu-

lar, it obeys Bayes’ rule

P XX} QX = PEXHH{XH Q{X)), (11)

whereQ({X;}) is the number of different spin configurations in the Hox; }.

We consider energy to be a smooth function of landscapes
E,=FE({X}), X, =0Cl(o,7), (12)

so that|0E/0X;| = O(1). Furthermore, we assume that, on one hand, the changgadnZ)

after flipping one spin igD(1), for typical problem instances. On the other hand, we assume
that correlation properties in a neighborhood of a o} described byP ({X;} | {X]}) vary
smoothly with box coordinates on a scdles [0.X;| < N. Therefore if we write the transition

probability in the form

PUXHXD) =p({X) = Xi}; {m}),  {==X/N}, (13)

thenp ({k;}; {x;}) is a steep function of its first argument: it decays rapidly in the range
|k;| < N for eachi-component. However this is a smooth function of its second argument: it

varies slightly when coordinates change on a scaléz;| < 1.



One can show that under the above assumptions the quantum ampfitudesesponding to
the smallest eigenvalue depend on the spin configurationly via the coordinates of thes box

{X,} to which it belongs. Then we look for the solution of (9) in the following form:

_ 90({Xl}7 T)

VX

where|p({X;},7)|* gives the probability of finding the system in the bpX;}. Plugging (14)

Go(T) {X,=C(o,I)}. (14)

into (9) and making use of (11),(12) we obtain:
)‘(T)(?O(Xv T) - TE(X)SO(Xa 7—) - (1 - T)NZ L(Xv X,}) 90<X/7 7_)7 (15)
X/
X = {XlaXQa"'yX/C}a (16)

(hereafter we use the above shorthand notation for the set of landscapes). In (15) we introduced
L

L(X,X") = L(X',X) = P(X'|X) a7)
P(X) =2"YQ(X),

where P(X) is a probability that a randomly sampled configuratioelongs to a boxX. We

shall look for a solution of (15) in the WKB-like form

o(X, 1) =exp (-W(X, 7)), (18)
so that
A7) =TE(X) = (1= 7)N ) | L(X, X)W X =W, (19)
X/
We now introduce scaled variables (cf. (13))
X 1—7 A
X = Nﬂ I'= - ) g = m7 (20)
and also
1 1 1
w(x,T) = NW(X,T), e(x) = NE<X)7 s(x) = Nlog Q(X), (21)

wheres(x) is an entropy function. Based on (17) and the properties of the transition probability
(see Eq. (13) and discussion after it) we assume that the sunXove(19) is dominated by terms

with | X’ — X| = O(1). Then we can use an approximation

W (X', 7) - W(X,7) ~ Vw- (X' — X) + O(1/N), (22)



whereVw = ow(x,I")/0x. Plugging (22) into (19) and making use of Egs. (13),(17),(20) and

(21) we obtain after some transformations:

g = h(x,Vw;T), (23)

h(x,p;T) = e(x) =T p(k;x)e (V2.
k

(hereVs = 0s(x)/0x). This is a Hamilton-Jacobi equation for an auxiliary mechanical system
with coordinatesx, momentgp = Vw, actionw, Hamiltonian functiom(x, p; I") and energy;.

Using the symmetry relation
pk;x)e V2 = p(—J; x)el V2, (24)

that follows directly from Egs. (11) and (17) we obtain that the minimumw(of, I') overx where

Vw = 0 necessary corresponds to the minimum of the functional:
f(x,T) = (x) — T¢(x), (25)
wheref(x,I") = h(x,0,T") and
() =5(Vs/2x), Blyix) =Y plsx)e ™. (26)
k

The summation in (23) and (26) is over componéntsf k in the rangek; € (—oo, 00). In what
follows, we shall refer tg)(y; x) in (26) as a “Laplace transform” of k; x).

We note that/(x) = > ., L(X',X) and one can use Bayes rule and inequality of Cauchy-
Bunyakovsky in (17) to show that that the positive-valued functipy is bounded from above,
0 < ¢(x) < 1. This shows that the analysis of the effective potential based on the WKB approxi-
mation (22) is self-consistent in the asymptotic lilNit— oc.

It follows from the above analysis that the ground-state wavefunaticnI') = o(X, 7)
is concentrated irx-space near the bottom of the “effective potential” given by the functional
f(x,I'), i.e. near the point..(I') wheref(x, I') reaches its minimum. In this regich~ %XTA X,
where matrixA is positive definate, and according to (18), the wavefunction has a Gaussian form
with the widthoc 1/+/N.

The ground-state energy= ¢(I") is given by the value of the effective potentjal25) at its

minimum

g(F) :f(X*<F)7F>7 (27)
8f(xa 1—‘)/8X| =0, f(Xv F) > g(F)

x=xx (I")



We note that af' — 0 the shape of the effective potentjdlx, I') approaches that of the energy
functione(x) and therefore its minimum., (I') — x, wherex, is a minimum ofz(x). It can be
shown that in this limit the ground-state eigenvalue approaches the minimum energy (value
and the eigenvalues & ~! approach zero (and so does the characteristic width of the wavepackage
¥(x,T)). The spin configurations that belong to a bgxn x-space correspond to the solutions of
the optimization problem at hand. It is clear that one of the solutions can be recovered with high
probability after a measurement is performed at the end of the “quantum annealing” procedure.

Variational Ansatz: For cases in which the set of macroscopic varialjl&s} is not suf-
ficient (in statistical sense (13)) to describe the dynamics of the quantum algorithm, one can
still implement the above procedure as approximation using a variational method. Intro-
ducing a Lagrangian multiplieA, one looks for the minimum of the functiond (o, \) =
(p|H|p) — A({¢|¢) — 1), using a variational ansatz (14) for the wavefunction. The solution of
the variational problem is provided by Egs. (18)-(27). The smallest eigenydRi® corresponds
to the value of the Lagrange multiplier at the extremums= 7/Ng, and the maximum of the

variational wavefunction corresponds to the minimum of the effective poteh(ib).

A. Global bifurcations of the effective potential

However, in the case of a global bifurcation where the effective potefitiall’) possesses
degenerate or nearly degenerate global minima, the answer is modified. If for some value of
I' = T,, a global bifurcation occurs, in our example this would mean that for this valiietefo
values ofx, x;” andx; give a global minimum tgf(x,T"). In such a case, the smallest eigenvalue
is not doubly degenerate; rather an exponentially smalldyap;, between the ground and first
excited state is developed, itself being proportional to the overlap between two wave-functions,
peaked around; andx; respectively.

To estimate the overlap we note thatlgtthe two global minima of the effective potential
f(x,T',) correspond to the two coexisting fixed points of the Hamiltonian function in (23) with

zero momentum and the same values of energy

Of /0x = Oh/dx = Oh/dp = 0 (28)
x=x¥ p=pi=0, gxp;l.) =g =g, (29)
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Then to logarithmic accuracy we have

%log AGmin = /_OO dt' [x(t)p(t') — h(x(t'),p(t'))] + O(1/N), (30)

o0

where(x(t), p(t) ) is a heteroclinic trajectory connecting the two fixed points of (23)

x(t) = Oh/Op, p(t) = —Oh/0x, (31)

x(t — 4+o00) = x¥,  p(t — Fo0) = 0.

From the algorithmic perspective this means that whegets close td’,, it has to change
exponentially slowly (cf. Sec. Il and Eq. (6)). This could be called a critical slowing down in
the vicinity of a quantum phase transition. If simulated annealing (SA) is used and a similar
phenomenon occurs, the value of the temperétiis the point where a global bifurcation occurs
in the free energy functional

f(x,T) =e(x) — Ts(x). (32)

By comparing the free energy functional (32) with the functional (25) corresponding to “guantum
annealing” (QA), we note that in QA the quantitifsand/(x) play the roles of temperature and
entropy in (SA), respectively.

We note in passing that a similar picture for the onset of global bifurcation that can lead to
the failure of QA and (or) SA was proposed in [18, 19] for the case where the ehgrgy a
non-monotonic function of a single landscape parameter, a total@ﬁ‘lzq oj. In this case the

dynamics of QA can be described in terms of one-dimensional effective potential [20, 23].

IV. THE MODELS

An instance of a Satisfiability problem witN binary variables committed tdé/ = ~/V con-
straints (where each constraint is a clause involvihgariables) can be defined by the specifi-
cation of the following two objects. One of them is &h x N matrix G, the rows of the matrix
are independenk’-tuples of distinct bit indexes sampled from the inter(alN'). Them-th row
of G defines the subset of th€ binary variables involved in the:-th clause. The second object
is a set of boolean functiorts = {b,, }, with each function encoding a corresponding constraint.
A function b,, = b,lo, ,0, ,...,0, |is defined over the set & possible assignments

Im1’ " Im2’ ? T OmK

of the string of K binary variables involved in thex-th clause. The function returns value 1 for
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assignments of binary variables that satisfy the constraint and O for bit assignments that violate it.
Then the energy function equals to the number of violated constraints

M
EO.EEO-(I) :M_me[o—gmﬂo—ng"”’O—ng}’ (33)

m=0
hereZ = (G, B) denotes an instance of a problem.

The matrixG defines a hypergrapé that is made up of the set of vertices (corresponding
to the variables in the problem) and a setMdfhyperedges (corresponding to the constraints of
the problem), each one connectiag vertices. An ensemble afisorder configuration®f the
hypergraph corresponds to all the possible ways one can plaee YN hyperedges amongy
vertices where each hyperedges carfiegertices. Under the uniformity ansatz all configurations
of disorder are sampled with equal probabilities (i.e., rows of the métere independently and
uniformly sampled in the (1V) interval).

Boolean function$,, may also be generated at random for each constraint with an example
being random K-SAT problem [16, 17]. However here we consider slightly different versions of
the random Satisfiability problem that are still defined on a random hypergraphhave a non-
random boolean functiob,, = b, identical for all the clauses in a problem. One of the problems
is Positive 1-in-K Sat in which a constrain is satisfied if and only if exactly one bit is equal 1 and
the otherK-1 bits are equal 0. The boolean functibfor this problem takes the form

K

blay, co, ..., ax] =6 [Z Lo W 1] (Positive 1-in-K Sat (34)

2
p=1
ap==x1, p=12,... K.

We shall also consider another problem, Positive K-NAE-Sat, in which a clause is satisfied unless
all variables that appear in a clause are equal ("K-Not-All-Equal-Sat”). The boolean furtction

for this problem takes the form

K

1 -

blar, o, ag] =1—> 8 [Z +23 % 0] (Positive K-NAE-Sal. (35)
s==%1 p=1

Both problems are NP-complete (Appendix A). It will be shown below that they are characterized

by the same set of landscape functions.
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V. LANDSCAPES: ANNEALING APPROXIMATION

For a particular spind) and disorder§)) configurations, all clauses can be divided iato
distinct groups according to the values of the binary variables that appear in a clause. We will label
the different types of clauses by vectorial index= {a4,...,ax}, o, = £1. We now divide
the set oR” spin configurations into boxes identified by certain numbers of clauses of each type,

N M., and also by the Ising spin in a configuratidiy

| MK
My = My(0,G) = N Z H5 [agmp, ap] : (36)
1 & o
QEQ(U)ZNZUJ‘- (37)

Different boxes correspond to macroscopic states defined by the set of parametéfs X) with
q € (-1,1)and) _ M, = 7. The energy function can be expressed via (36) as follows (cf.
(33)-(35)):

K K
e({Ma}) =7 =) GuMpm, Myu=> My6 [K—2m, Zap], (38)
m=0 [o7 p=1
where the form of the coefficients, depends on the problem:
d[m, 1] (Positive 1-in-K Sat)

1 —6[m,0] — é[m, K] (Positive K-NAE-Sat)

In the following we compute an approximation to the effective potential (25), using the land-
scape functions (36), (37). According to (26) it depends on the entropy fungtjofi/, }) and
the transition probability (13) between different macroscopic states. Recalling that vagiabies
M, are normalized by the factav we study the probability of transitiom(n, {ra}; ¢, {Ma}),
from the statdq, { M, }) to the statdq + n/N, { M, + ro/N}). The Laplace transform gfwith
respect tau, {r,} has the form (cf. (26))

D0, (Yot . {Ma}) = D e 2averep(n, {ra};q, {Ma}), (40)
n,{ra}

We assume that all binary variables are also subdivided into distinct groups based on their value
o = =1 and a vectok with integer coefficients:2 indicating the number of times a variable

appears in a clause of type in positionp. Clearly, consistency requires thi, = 0 unless
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a, = 0. We now define a quantity, , which is equal to the fraction of spins with givenk. For a
spin configuratiorr there exists a set of coefficients, x } with elements of the set corresponding
to all possible values of andk (there will be many)’s in a set for each spin configuration). In

general, there are exponentially many dets, } that correspond to a macroscopic state (/. })
Zacmk:q, Zkgcgyk:Ma (p=0,1,...,K). (41)
o,k o,k

Coefficients{c, x} are concentrations of spin variables with different types of “neighborhoods”.
We shall assume that in the limit of largé the distribution of coefficients, . corresponding to
the same macroscopic state (41) is sharply peaked around their mean values (with the width of the
distributionoc N—1/2),

Under the above assumption we can immediately compute the Laplace-transformed transition
probability (40) in terms of the coefficients k. Indeed, consider flipping a spin with value
and neighborhood type given by vector This will change the total spin by2¢ and for each
clause of typex and indexp € (1, K) the value of N M, will decrease byk?. On the other
hand, for the clause type’ = a(p, o) obtained by flipping a bit ip-th position ina, N M, is

correspondingly increased iy,. Hence the Laplace-transformed transition probability is

ﬁ(@) {ya}§ q, {Ma} Z Co kx €XP 200 + Z — Yau(p, a) k (42)

where the coefficients, x are set to their mean values in a macroscopic state (41)).

A. Entropy and coefficientsc, x in a macroscopic state defined by and {M, }

Here we use the annealing approximation to estimate the mean valugg @hd also of a
macroscopic statg;, M,). We start by introducing the concept of annealed entropy. \ die
the number of spin configurations subject to some constraints. In general, it is a function of the
disorder realization. The annealed entropy is defined as the logarithm of its disorder average:
sann = In{N'). Note that for the correct, quenched, entropy the order of taking a logarithm and
disorder average is reversed.

Since in the random hypergraph model all disorder configurations are equally probable, an-
nealed entropy is given as,, = InNsg — In Mg, whereNs is the total number of spin and

disorder configurations antl; is the number of disorder configurations.
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For enumerating all possible disorder configurations we depart slightly from the traditional
random hypergraph model. In our model all clauses are ordered (two disorder configurations where
any two clauses are permuted are deemed different), clauses can be repeated (the same clause car
appear twice), the order of variables in a clause is important (two disorder configurations are
different if the order of variables in any clause is changed), and finally, variables can be repeated
in a single clause. This change does not alter the underlying physics, since the probability that
two identical clauses appear is infinitesimal, and a variable enters a clause twice in &t(ost
clauses, which can be safely neglected. As regards the distinction between the disorders with
permuted clauses, this only introduces a combinatorial factor which cancels out. The advantage is
that each disorder can be represented as a sequenédGtuples of integers fron to V.

We will first compute the annealed entropy of a macroscopic stateV/,}) under addi-
tional constraints: we fix the values  and compute the annealed entropy as a function of
¢, {Ma},{c,x}. Recalling that)/, are the numbers of clauses of a given type scaledvby
and the total number of clausesyid/, we obtain the number of joint spin-disorder configurations

as a product of the following factors:
(i) the number of ways to assign types to claus€és)!/ [ (NMq)!,
(if) the number of ways to assign types to varialeg [ [, , (Ncox)!,

(iii) for all p, o, the number of ways to permute the appearance of variableshrposition of
clauses of typex: (N Mq)!/ [ 1, (K5,

Consequently, the annealed entropy is given by

Samnl{Coxc}i ¢ {Ma}] = = coxn [ca,k [Tk

O',k b,

+(K—1)ZMalnMa+71n7—7K.

(43)
In the largeN limit we replacec, x by their annealed averages, i.e., the values that maximize the
annealed entropy. In its simplest form, we place no constraints pexcept consistency require-
ments (41). Associating Lagrange multipliersaandIn 12, with these constraints, the expression

for the entropy can be rewritten as

Mo
Saml¢; {Mal] = min {—Aq +)  Mgln ARt Z[A, {MZH}

p7a

— ZMalnMa—i-fylny—wK. (44)
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The values ot, i are given by

1 Ao kE,
coae = ¢ [ ()™ /K2, (45)

p?a

andZ is given by

Z = exp ()\ + Z Z(S[ozp, 1]/1’&) + exp (—)\ + Z Zé[ap, —1];1&) : (46)

a p

The values of the Lagrange multiplieks .2, are related ta@, {M,} via

OlnZ
= a7

OlnZ
p = M,,. 48
Ho 5,7, (48)

From here we obtain the expression for the Lagrange multipfier
Mo 1+oa,q

= . 49
A 5 (49)

Then introducing a new notation

P,
1+ o,
Mi = Z 9 Mon (50)
P,
we obtain
2M.
Z =t 4 e et g = =, (51)
14+¢

Then the entropy can be rewritten in the following form

1 1—
+q+M_ln 9

Sann|@, {Ma}] = —=Ag+ M, In +InZ =) Maln Mo+7yIny—7K. (52)

We now use the following equations

ettt — Zﬂ, e el — Zﬂ (53)
2 2
and obtain the expression for the second Lagrange multiplier
1+q, 14q 1—q, 1—gq
—\q = — ] — 1 —InZ ++K. 4
Aq 5 n— 5 In— nz+vy (54)

Upon substitution of\ from the above into the expression far,, (52) we finally obtain the

annealed entropy

V1—¢? 1 1-—
Sann[Q; {Ma}] = — (q tanh_lq — lan + M+ In ;_q + M_ lﬂTq
— ) Maln My +yIny. (55)

Also the coefficients, x are given by (45),(46) with Lagrange multipliers given in (49) and (54).
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B. Effective potential

Consider a factof(x) = (0f/9I'). (25), (26) in the expression (25) for effective potential with
x = (q,{M4}). It follows from (26) that to find this factor we need to evaluate the Laplace-
transformed probability (40,42)) at

1 1
0= §asann/8q7 Yo = gﬁsann/(‘?Ma. (56)
This is where the Lagrange multipliers come in handy as we can immediately claim that

OSanmn/0q = —\ (57)
OSamn /OMa = Zln%; — In M,. (58)
Mo

Note that in differentiating with respect fd,, above we omitted the constant term. This is permis-
sible since only differenc@$q.,,/0My — Ogann /O M appear in Eq. (42). A further refinement is

to write

M,, 1+0,q V1= q? _
zp:lnlu—g:zmTp:KlnTJrzp:ap tanh™' q.

Using this in the Egs. (26),(42), we obtain

ko
My
0(q, {My}) = ZH (H’aezz oy —0!,) tanh™! Ma> kD). (59)

ok p,a

Since% Zp, (op — 0,,) = 0, (Wherea! is obtained fromw by flipping p-th bit) and also

/1 — o2
1 q optanh~lg

Mafpl, = Yo Lemvioni™s,

the expression is considerably simplified

(g, (Ma}) = 5 exp

(o Vi) )

where the sum is over paifsy, ') that differ in exactly one position

| K
52\0@-—&;] =1. (61)
p=1

To evaluateZ we write

2 M. M_
Jee = exp <—+ ; —)

1—¢? 1—q¢? l+q 1—g¢q
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and the expression férbecomes

/ 22 oo/ >V MaMa’ M M_

hereM_. are given in (50).

We note that the effective potentiflg, { Ma}) = c({Ma}) — I'l(q, {Ma}) is Symmetric with
respect to permutation of individual components{il,} corresponding to different orders of
-1's and +1’s in the vectorial index. We look for the minimum off (¢, { M4 }) using symmetric

ansatz

—1 K
Ma:(K> Mo, mzzl_o‘p. (63)

m 2
p=1

wherem is the number of -1's imx. Substituting (63) into (62) and rewriteing

U(g;{Mm}) = V1 — ¢ exp (2 2 m—o V(M + 1i(f(q; m)My My,

Ky a3y (K - 2m)Mm> , (64)
1—¢q?
where we defined (¢, {M,,}) = ¢(q, {M,}). The effective potential is then
Fg,{iMn}) = ((Mn}) —Tl(g {Mn})  (QA), (65)

with energy given in (38). In the case of the SA algorithm the corresponding free-energy functional
(32)is

where the entropy function equals

— 2
5(Q7 {Mm}) = — qtanhfl q+ (”yK — 1) In 12 4
— <Z(K - 2m)Mm> tanh™'q — Z M., In (T’; (67)
m=0 m=0 m

If we were to use an even smaller set of macroscopic parameters (e.g. only the gnergy
we can still employ formula (64) with the proviso that unspecified variables should be taken to
equal their most likely values, i.e. those that maximize the entedqpy{ M., }) not the landscape
{(q,{M.,,}). For example, in the case of energy-only landscapes (<), the values;, { M.}
that maximizes(q, { M, }) for a given energy and number of hyperedgesv (Zﬁzo M, =7)
should be computed and then substituted into the expressidr(6d).
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Ye

Yd
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0.676
0.557
0.475
0.416
0.371
0.335
0.305

0.805
0.676
0.609
0.548
0.500
0.461
0.428
0.400

19.8
34.9
61.7
109
196

241
5.19
10.7
21.8
44.0
88.4
177
355
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TABLE I: Annealing bounds for dynamieyf) and static{.) transition for positive 1-in-K SAT and positive

K-NAE SAT for different values of the number of variables in a clatse

We compute, within the annealing approximation, the point of static transjtigof. Fig.1),

where the entropy of the macroscopic state with zero energy vanighes; 0, and the dynamic

transition,; for connectivitiesy > ~, an effective potential (65) exhibits a global bifurcation for

somel’ = I',. The resulting values are given in Table | ( see also Figs. 2 and 3).

0.7t 9
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0.4f * o
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FIG. 2: Static~. (circles) and dynamicy,
(crosses) transition for positive 1-in-K SAIs

K.

10°

2L +
10 °

+0
+

10t °

10°

FIG. 3: Static~. (circles) and dynamicy,
(pluses) transition for positive K-NAE SAVs
K.

In Fig. 4 we plot time variations of the landscape paramet&ls, = M.,,, corresponding

to the global minimum of the effective potential. In Fig. 5 we plot a time-variation of the scaled

ground-state energy given by the value of the effective potential at its minimum. Singular be-
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havior corresponding to the first-order quantum phase transition at certain, (I' = I',) can
be clearly seen from the figures. Plots in Figs. 4 and 5 correspond to precisely the static transition

~v = . for the case ofK = 4 in 1-in-K SAT problem. In the region, < v < ~. there are

1
0.9r
0.8
0.7p

> 061
-

e 05¢

0.4r

0.31

2
0.2'0
O.l*3

4

FIG. 4: Plots of the landscape paramet#is, = M., at the global minimum of the effective potential,

vsT for K = 4 (1-in-K SAT problem). Curves labelled 0-4 correspond\tt, /~ throughM..4 /7.

0 T T T

-0.05¢

-0.25 . . . .
0.65 0.7 0.75 0.8

FIG. 5: Scaled energy of adiabatic ground states

for K=4 (1-in-K SAT problem).

exponential (inV) number of solutions to Satisfiability problem but the runtime of the quantum
adiabatic algorithm to find any of them also scales exponentially Wit his is ahard region for

this algorithm. We note, that in the limit df — oo the annealing approximation becomes exact.
Together with the fact that for largk€ ~, and~,. seem to be distinctly different provides evidence

that this result (existence of hard region for quantum adiabatic algorithm) is robust.
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FIG. 6: Results of numerical simulations and their comparison with theory. Depicted are Laplace transforms
of M, for 1-in-3 SAT. Numerical results: curves that have different colors correspond to different random

problem instances; curves of same color correspond to different random bit strings. The dashed black line is
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0.95

a theoretical result based on the annealing approximation. The insets (a)-(e) depict instante with

10°, 105, and107 binary variables. Since the error is not recognizable we replot in (f) a magnified section

of inset (e). The bit strings were sampled with= 0.422, My = 0.048, M; = 0.416, My = 0.123,

M3 = 0.013, corresponding td//N = 0.6. These values correspond to the enefgy/2 and they are

shifted by 10% from the most likely values @f{ M., } for this energy (this shift is> N'/2). We also note

that for 1-in-3 SAT numerical simulations give static phase transition at 0.62).
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VI. UNIVERSALITY PROPERTY FOR TRANSITION PROBABILITIES

Here we study the universal features of the transition probability in (10) for the set of macro-
scopic variables corresponding to the (normalized) total Ising g¢@ind numbers of clauses of
different types{.M,,,} (38) (the type of a clause is equal to the number of unit bits involved in the
clause). For simplicity, we shall focus in this section on the dase 3 only.

To clarify the above choice of macroscopic variables we consider an auxiliary quantity: a
conditional probability distribution of the macroscopic variables{.M.,,,}) over the set of all
possible configurations obtained by flipping- bits of the configuratiow’. The first moments of

this distribution corresponding t&1,,,,
N -1
“m—(r) ;Md(a—d)ﬂ“] My (o,Z), m=0,...,K, (68)

can be easily computed by counting the number of ways one canlii in configuratioro’ to
transform aki -bit clause ofm’ type (i.e., withm’ unit bits) into a clause of the:-th type
M E m\ ([ K—m N-K
'um:(r) p7;0Mm/(p)(m—m’+p)<r—2p—m+m’)’ (69)

(here we use the conventic(ﬁl) = 0 for m < 0 andm > n). In the double sum above values of
M., are multiplied by the number of possible ways to flip three groups of pitsit bits in a
clause ofn'-type,p+m —m' zero bits of this clause, and- 2p — m +m/’ bits of the configuration
o’ that do not belong to the clause. Similarly, one can show that the first moment corresponding to
the variable; equalsy’(1 —2r/N). Itis clear that dependence of the first moments on the ancestor
configurationo’ is only via the variableg’, M/ for that configuration.

In the limit, » > 1, the above conditional distribution has a Gaussian form with respect to
g and M,,. Elements of the covariance matrIS(;g’qq’(a’) = O(r), and correspondingly, the
characteristic width of the distribution @(r'/?). For a configuratiom’ randomly sampled in the
box (¢, {M,,}) the .m.s. deviation of the elementsXf ¢ (o) from their mean values in the box
is O(N'/2). Itis clear that in the limit >> N'/2 the covariance matrix elements can be replaced
by their mean values for the macroscopic statg .M., }). Therefore in this limit the conditional
distribution afterr spin flips starting from some macroscopic state depends only on the values of
(q,{M.,,}) in this state (universality property).

One can show that for < N''/2 the conditional distribution after spin flips can be expressed

via the distribution (10) with- = 1, using a standard convolution rule. However for= 1 the
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form of the distribution is non Gaussian and we were not able to establish universality properties
in the general form. Instead we performed a series of numerical studies. In Figure 6 we present
the results of numerical simulations and the comparison with analytic results within the annealing

approximation. One can see that the theory is in very good agreement with experiment.

VIl. CONCLUSION

We have formulated an ansatz of landscapes and studied the complexity of the quantum adia-
batic algorithm within the annealing approximation and found the existence of a dynamic transi-
tion and a hard(exponential) region above that dynamic transition. However, a similar analysis of
simulated annealing did not reveal any phase transitions. We explain this as follows. The anneal-
ing approximation should fail for sufficiently small energies. Itis commonly known that simulated
annealing can find suboptimal solutions with very small energies very efficiently, but it takes an
exponentially long time to actually reach the ground state. The annealing approximation does not
correctly describe very small energies and cannot be used to establish its complexity. Note that
we can reconcile this with the fact that the annealing approximation becomes exact in the limit
K — oo: if the annealing approximation fails far < Ex we expect that’ is decreasing to
zero asK increases. However for any finif€, the free energy computed within the annealing ap-
proximation is free from any singularities indicative of a phase transition. To study the complexity
of simulated annealing one needs to use the tools of spin glass theory, in particular, the replica
trick [15-17].

In contrast, in our analysis of the quantum adiabatic algorithm, we observed a first-order phase
transition, and, importantly, it happens for energies~ O(E,,) (where E, is the expected
energy at infinite temperature,, = QL >.. E.. Moreover, the energies on both sides of the
transition, relative tdv,, seem not to change appreciably with increagihgSince the annealing
approximation for this range of energies can be used, the prediction for the dynamic transition
should survive, though the exact numerical values may acquire corrections. We have recomputed
the dynamic transition with simplified energy-only landscapes (see Fig. 7). For 1-in-K SAT one
can clearly see that the relative correction quickly diminishes. We believe that same happens for K-
NAE SAT if sufficiently largeK’’s are considered. If this indeed holds, it serves as a corroboration
that our results are correct numerically for lafge The idea of using energy-only landscapes was

present in [7] as well as [21] and [22]. A jump in the time-dependence of the expected energy



23

value was seen in numerical simulations [8], indicative of first-order phase transition, though a

different ensemble was considered (only instances having a unique solution were considered).

0.2

0.18f
0.16}
0.14¢
550.12— * * +
o oif
230.08—
0.06f
0.04f x
0.02}

FIG. 7: Relative difference between predictions for the dynamical phase transition point in the case of full

(va) and energy-onlyy%) landscapessof K for 1-in-K SAT (crosses) and K-NAE SAT (pluses).

We emphasize that the annealing approximation employed in this paper essentially neglects
fluctuations due to disorder, and describes the transition as a global bifurcation between two
macroscopic states (pure states) and the complexity is due to tunnelling between them. In con-
trast, spin glass theory predicts the existence of an infinite number of pure states[15]. Secondly,
affirming our results for largé& ignores the structure of the problem, since that limit corresponds
to the so-called random energy model, where one does not expect to do bettex #ét) via
any quantum algorithm. Consequently, the complexity could be determined not by the unique
minimum gap, but by a cascade of level repulsion. Numerical studies, however, support the pic-
ture with a unique minimum gap. Also, the first-order phase transition occurs for large energies.
Although it is absent for smalk’, we believe that a better approach (as compared to annealing
approximation) will reveal it. Moreover, we believe that the order of the transition will remain
unchanged, suggesting that the disorder may be irrelevant for the determination of the order of the
phase transition and, consequently, for the complexity of the quantum adiabatic algorithm. That
is, the exponential complexity is not due to the true combinatorial complexity of the underlying
random optimization problem but rather due to peculiarities of the driver term and a particular
ensemble of random instances considered. In fact, for a symmetrized variant of the exact cover
problem, the same phenomenon was observed — the exponential slowdown — although the problem
did not possess any randomness [18, 19]. In fact, a ground state of that problem could be found

in O(N) time. However, it was possible to modify the driver term in the annealing Hamiltonian
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[20, 23] to circumvent the slowdown. It is quite possible that a similar change of driver term can
achieve same goals in present case, although we have not analyzed this scenario. In such a case,

one would have to go beyond the annealing approximation to study the complexity.
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APPENDIX A: ON THE NP-COMPLETENESS OF POSITIVE 1-IN- K SAT AND
POSITIVE K-NAE-SAT.

We set out to prove that both Positivein-K Sat andK-NAE-Sat are NP-complete. 1t is
straightforward to see that it takes a polynomial time to verify the assignment, so these problems
are in NP. We now prove that they are as hard as the Satisfiability problem, which is NP-complete,

by showing that any boolean formula can be represented as an instance of these.

1. Positivel-in-K Sat

A clause of type(z, ..., z,y) necessarily implies = 0 andy = 1; hence we can represent
constantd) and1. A clause of typeg(0,...,0,z,y) impliesz = —y. Finally, a clause of type
(0,...,0,z,y, z) is equivalent to a 3-clause, y, z) so that we can restrict ourselveso = 3
without losing generality.

For K = 3, immediately observe that three clausesz, v’)(y, z, u”)(u, «’, u") with free vari-
ablesu, v’,v” impliesz = —(x A y). This basic building block is in fact sufficient to build any

boolean formula, as a result, any boolean formula can be castlamali SAT formula.
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2. Positive K-NAE-Sat

A clause of type(z, ..., z,y) necessarily implies = -y, and(z, ..., z,y, 2) is equivalent
to (z,y,z) SO we once again restrict ourselvesio= 3. In contrast tol-in-K problem, we
shall require a non-trivial representationfafseor true. We will usepairs of variables to denote
variables of the boolean formula. Pai$or 11 will represent valudalseand pair)1 or 10 will
representrue.

The next building block{z, y,t)(y, z,t)(z,z,t) ensures that = 1 if the majority of z,y, z
are0 andt¢ = 0 if the majority arel. We shall use a shorthant; z, y, z) to denote this. The
expressionf (z1; x1, y1, y2) f (22; T2, Y1, y2) then ensures = = A y wherex, y, z are represented
as pairsrixs, Y192, 2122 as indicated above. The operation of negation is trivial to represent: if

x = x1xe then—x = (—x1)xe. These two are sufficient to construct any boolean formula.

APPENDIX B: NEXT ORDER APPROXIMATION FOR LANDSCAPES

A better approximation for the values of critical clause-to-variable rations can be obtained if
we specify the constraint that the distribution of vertex degrees be Poisson (as it is supposed to be

in a random hypergraph [24]). To be precise, we specify that

_IL"
S I (St ) =et = P &
o,k p o P
Consequently, with this constraint the following expressiorcfqris obtained:

e T, [ko! TTa(kt)b= /K2
Ziky)

: (B2)

Cok = C{ky}

where we use

kp kp
Ziy = [ <Z 5y — 1),@) +e M ] (Z 5(y + 1),@) . (B3)

o3

Annealed entropy can be rewritten in the form

M
g {Ma}] = min { —A Maln 2 41 ZA 2] S =57 Maln My +y1lny — 7K,
Sann[2 {Ma}] IAm,I}{ ¢+ Maln—2+InZ u]} g n Mg +7yIny -y

p
Mo P, Ma

whereln Z is given by

InZ = Z C{kp} In Z{kp}-
thp}
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The equations relating { M, } and\, {2} are given in (47),(48).
Similarly to Sec. VB we will use the notation (50). SinbeZ depends only o\ and yi,
dln Z/0u®, depends only on,. Therefore M, /2, = M,/ ,,. Correspondingly,
. M, M_
Samn|@s {Ma}] =min —A¢g+ MyIn—+ M In— +1InZ —ZMalnMa+71n7—7K
Abt Mt H— =

For convenience, we introduce new variables
pr = pe™ (B4)
We then readily obtain

InZ =~vlnp+ Z ¢ In[2 cosh(A + kh)],
k
(wherek = Z k, andc;, = (”’K) 9=l e=7K) andy drops out of the expression fey,,, altogether:
Sann[d, {Ma}] = min {—)\q — (My — M_)h+ ) ¢, In2 cosh( + kh)]} (B5)
' k
— Y Maln Mg+ MyIn My + M_InM_ +vIny — 7K.

It is easy to see from this expression what the equations,fbare:

> " cptanh[A + kh] = g, (B6)
k

> keytanh[A + kh] = M, — M_.

We now turn our attention to the functid(y, { M, }) given by (42) withd andy,, evaluated from
Egs. (56),(58). The computation &%’ yields

M. o\ M
= (\/#\/ 57) Vo (B7)
Multiplied by p2, this becomes
MMy
P ooYaYor — Y _TXTTX B8

The expression fof(q, { M, }) can be written in the form (cf. (59))

q’ {Ma} Z Clkp} Z /\s+2st [kp!H(Mﬁey"ya/)kg/kﬁ!] :

{kp} {kp} ok
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with the internal sum running ovérconsistent with a set gft, } (B1). Substituting the quantities

defined above this becomes

kp
Mo M,/
£, (4 Sadlo, - o))

g, {Ma}) = Z k) ~ * . (B9)

(kp} {kp}

After some transformations we finally obtain
(Z<a ars /Mo, ¥

/My M-
My}) B10
o AMa}) = Z * cosh|\ + kh] (810)

where), h are given by (50),(B6). Using symmetric ansatz (63) it is straightforward to calculate
from (B10) the restricted functiof(q, {M.,,}) (cf. (64)). We must note however, that although
this represents a next-order improvement over annealing approximation, the relative chapges in

and~y,; computed with this improved approximation are nearly imperceptibl&q*).



